Topologies from closure operators

CHRISTIAN V. NGUEMBOU TAGNE

June 14, 2023

In this note, we prove the following result.

Proposition 1.

Let X be a set and let $M \mapsto \overline{M}$ be a mapping of the power set $\mathscr{P}(X)$ onto itself such that:

- (1) $\overline{\emptyset} = \emptyset$;
- (2) for every $M \subset X$, we have $M \subset \overline{M}$;
- (3) for every $M \subset X$, we have $\overline{\overline{M}} = \overline{M}$;
- (4) for all $M \subset X$ and $N \subset X$, we have $\overline{M \cup N} = \overline{M} \cup \overline{N}$.

Then there is a unique topology on X such that \overline{M} is the closure of M with respect to this topology, for all $M \subset X$.

Proof:

There are two parts to our argument.

Existence of the topology

Let \mathfrak{F} the set of all subsets A of X satisfying $\overline{A} = A$. Then $\emptyset \in \mathfrak{F}$, by (1). Moreover, by (4), if A and B are members of \mathfrak{F} , then

$$\overline{A \cup B} = \overline{A} \cup \overline{B} = A \cup B$$
.

and so $A \cup B$ is also a member of \mathfrak{F} . Therefore, every *finite union* of sets of \mathfrak{F} is a set of \mathfrak{F} . Further, $\overline{X} \subset X$, by (2). However, by definition, $\overline{X} \subset X$. Therefore $\overline{X} = X$, and so $X \in \mathfrak{F}$. We shall now prove that every non-empty intersection of sets of \mathfrak{F} is a set of \mathfrak{F} . To this end, we note that, if $B \subset A$, then $\overline{B} \subset \overline{A}$; indeed, $B \subset A$ implies $A = (A \setminus B) \cup B$ and

$$\overline{A} = \overline{(A \backslash B) \cup B} = \overline{(A \backslash B)} \cup \overline{B},$$

emboune

and so $\overline{B} \subset \overline{A}$. Let B be the intersection of a non-empty set $\mathfrak A$ of members of $\mathfrak F$. Then, for each $A \in \mathfrak A$, we have $B \subset A$, and so $\overline{B} \subset \overline{A} = A$. Therefore $\overline{B} \subset \bigcap \mathfrak A = B$. In addition, $B \subset \overline{B}$, by the property (2). Thus $\overline{B} = B$, that is, $B \in \mathfrak F$. It follows that every *intersection* of sets of $\mathfrak F$ is a set of $\mathfrak F$. Hence $\mathfrak F$ is the set of closed sets of a topology $\mathfrak T$ on X.

Closure of sets and uniqueness of the topology

For any subset A of X, let A^c denote the closure of A with respect to the topology \mathfrak{T} . Then $A^c = \bigcap \mathfrak{B}$, where \mathfrak{B} is the set of all closed sets, which contain A. In other words, \mathfrak{B} is the set of all members of \mathfrak{F} , which contain A. The property (3) implies $\overline{A} \in \mathfrak{F}$, while the property (2) yields $A \subset \overline{A}$. Therefore \overline{A} is a member of \mathfrak{B} . Hence $A^c \subset \overline{A}$. Further, we get $\overline{A} \subset \overline{A^c}$ from $A \subset A^c$. However, A^c belongs to \mathfrak{F} , as intersection of members of \mathfrak{F} . Thus $\overline{A^c} = A^c$, and so $\overline{A} \subset A^c$. Consequently, $A^c = \overline{A}$. From this equality, since the closed sets of a topological space are the ones coinciding with their respective closures, we deduce the uniqueness of the topology \mathfrak{T} .

References

- [1] Bourbaki, N., *Elements of mathematics*, **General Topology**, Chapters 1 4, Springer-Verlag, Berlin, etc., 1989.
- [2] Kelley, J. L., *General Topology*, Graduate Texts in Mathematics **27**, 2nd printing, Springer-Verlag, New York, etc., 1975.