Notoirement, un magma est un groupe s'il est associatif, unifère et si chacun de ses éléments possède un inverse. Dans cette note, nous présentons deux alternatives à cette définition de la notion de groupe. Tout d'abord, nous montrons que, pour qu’un magma soit un groupe, il suffit qu'il soit associatif, unifère à gauche et que chacun … Lire la suite de Deux définitions alternatives de la notion de groupe