Cet article est le deuxième d’une série de leçons sur la théorie des magmas. À la suite de la première leçon dédiée aux définitions préliminaires, aux composés de séquences, aux puissances n-ièmes et au théorème d’associativité, cette deuxième leçon est consacrée au théorème de commutativité, à ses corollaires et conséquences. Nous y démontrons le théorème … Lire la suite de Théorie des magmas 2 : Théorème de commutativité
Éléments permutables
Paires d’entiers naturels distincts et permutables pour l’exponentiation
Pour une loi de composition interne, deux éléments de l’ensemble sous-jacent sont dits permutables si le composé du premier par le second est égal au composé du second par le premier. En particulier, chaque élément est permutable avec lui-même. Une loi de composition est dite commutative si deux éléments quelconques de l’ensemble sous-jacent sont permutables. … Lire la suite de Paires d’entiers naturels distincts et permutables pour l’exponentiation