Notoirement, l’ensemble des polynômes à coefficients réels de degré inférieur ou égal à n est un espace vectoriel de dimension n+1. Dans cette note, nous étudions un endomorphisme de cet espace vectoriel. Précisément, nous allons déterminer ses valeurs propres, puis en déduire que l’endomorphisme en question est diagonalisable. À cet effet, au lieu de se servir du polynôme caractéristique, nous allons faire usage de la définition des valeurs propres et mettre à contribution des résultats de la théorie des polynômes et des fractions rationnelles.
Réaliser un don pour nous encourager à produire plus de contenus.
Choisir un montant
€5,00
€15,00
€100,00
Ou saisissez un montant personnalisé :
€
Votre contribution est appréciée.
Faire un don
Publicités